Helicity-conservative finite element discretization for incompressible MHD systems
نویسندگان
چکیده
We construct finite element methods for the incompressible magnetohydrodynamics (MHD) system that precisely preserve magnetic and cross helicity, energy law Gauss at discrete level. The variables are discretized as differential forms in a de Rham complex. present numerical tests to show performance of algorithm.
منابع مشابه
Block Preconditioners for Stable Mixed Nodal and Edge finite element Representations of Incompressible Resistive MHD
The scalable iterative solution of strongly coupled three-dimensional incompressible resistive magnetohydrodynamics (MHD) equations is very challenging because disparate time scales arise from the electromagnetics, the hydrodynamics, as well as the coupling between these systems. This study considers a mixed finite element discretization of a dual saddle point formulation of the incompressible ...
متن کاملA robust solver for the finite element approximation of stationary incompressible MHD equations in 3D
In this paper, we propose a Newton-Krylov solver and a Picard-Krylov solver for finite element discrete problem of stationary incompressible magnetohydrodynamic equations in three dimensions. Using a mixed finite element method, we discretize the velocity and the pressure by H1(Ω)-conforming finite elements and discretize the magnetic field by H(curl,Ω)-conforming edge elements. An efficient pr...
متن کاملA discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids
Using the generalized variable formulation of the Euler equations of fluid dynamics, we develop a numerical method that is capable of simulating the flow of fluids with widely differing thermodynamic behavior: ideal and real gases can be treated with the same method as an incompressible fluid. The well-defined incompressible limit relies on using pressure primitive or entropy variables. In part...
متن کاملBlock preconditioners for finite element discretization of incompressible flow with thermal convection
We derive block preconditioners for a finite element discretization of incompressible flow coupled to heat transport by the Boussinesq approximation. Our techniques rely on effectively approximating the Schur complement obtained by eliminating the fluid variables to obtain an equation for temperature alone. Additionally, the method utilizes existing block-structured preconditioners and multilev...
متن کاملGauge finite element method for incompressible flows
A finite element method for computing viscous incompressible flows based on the gauge formulation introduced in [Weinan E, Liu J-G. Gauge method for viscous incompressible flows. Journal of Computational Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This new gauge variable is a numerical tool and differs from the standard gauge variable that aris...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2021
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2021.110284